Higher Order Bernoulli Polynomials and Newton Polygons

نویسنده

  • Arnold Adelberg
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

Newton polygons for character sums and Poincaré series

In this paper, we precise the asymptotic behaviour of Newton polygons of L-functions associated to character sums, coming from certain n variable Laurent polynomials. In order to do this, we use the free sum on convex polytopes. This operation allows the determination of the limit of generic Newton polygons for the sum ∆ = ∆1 ⊕ ∆2 when we know the limit of generic Newton polygons for each facto...

متن کامل

m at h . N T ] 1 8 Ju n 20 07 NEWTON POLYGONS FOR TWISTED EXPONENTIAL SUMS AND POLYNOMIALS

We study the p-adic absolute value of the roots of the L-functions associated to certain twisted character sums, and additive character sums associated to polynomials P (x d), when P varies among the space of polynomial of fixed degree e over a finite field of characteristic p. For sufficiently large p, we determine in both cases generic Newton polygons for these L-functions, which is a lower b...

متن کامل

Decomposition of Polytopes and Polynomials

Motivated by a connection with the factorization of multivariable polynomials, we study integral convex polytopes and their integral decompositions in the sense of the Minkowski sum. We first show that deciding decomposability of integral polygons is NP-complete then present a pseudo-polynomial time algorithm for decomposing polygons. For higher dimensional polytopes, we give a heuristic algori...

متن کامل

Newton Polygons of Polynomial Ordinary Differential Equations

In this paper we show some properties of the Newton polygon of a polynomial ordinary differential equation. We give the relation between the Newton polygons of a differential polynomial and its partial derivatives. Newton polygons of evaluations of differential polynomials are also described.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998